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ABSTRACT 

 

ARTICLE INFO 

GPU based systems are in demand due to their massively parallel architecture with 

thousands of cores to handle multiple tasks simultaneously and improve the application 

performance dramatically. However, GPU based system implementation requires 

specific hardware and software supports, and thus it is costlier compared to common 

machines. To solve this problem, the Common Object Request Broker Architecture 

(CORBA) based distributed framework can be implemented. In this paper, we are 

proposing and implementing a language and platform-independent distributed 

framework, which enables GPGPU processing as a service from a remote host to 

common CPU, enable clients. Besides, the adaptive merged sort is taken as an example 

application and implemented on GPU based parallel system with a novel approach.   
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I. INTRODUCTION 
 

Compute and process a humongous amount of data set in 

minimal time is always an attraction to the programmers. 

Recently, performance improvement by reducing time is 

one of the major research domains. In this regard, parallel 

applications including -Abinit [1], Accelereyes Arrayfire[2], 

Acceleware AxRecon[3], etc are implemented over the 

Graphics Processing Unit (GPU)[4] and the number is 

growing. The term GPU was arrived by NVIDIA in 1999, 

and it was presented as a "single-chip processor with 

integrated transform, lighting, triangle setup/clipping, and 

rendering engines". Compute general computational work 

using GPU is known as GPGPU (General-purpose GPU). 

Today's GPU is an integral part of a graphics card and has 

hundreds of cores that can execute multiple numbers of 

instructions in parallel. Their performance is also far greater 

than modern CPUs with 4 or 8 cores. However, GPU based 

system (GPU enable graphics card) needs specific H/W and 

S/W supports including OS version, RAM size, Bandwidth, 

CPU types, etc., to do GPGPU processing. The additional 

cost is another issue for such system implementation. Let's 

take an example of a parallel computing lab with several 

workstations and installed different OSs, H/Ws, and S/Ws. 

Thus, implementing the GPU enables graphics card may 

require changing/replacing the available H/W and S/W  

settings. This may also include additional costs. An 

alternative to this situation is to implement a distributed  

 

 

framework where two/three workstations (hosts) can be able 

to do GPGPU processing and the rest can work as a client to 

request GPGPU servicing from host PCs. It can support to 

reduce the additional cost as well as provide an 

infrastructure (GPU based system) as a service to GPU 

unable devices.  

Thus, In this work, we are proposing a platform-

independent distributed framework that enables GPGPU 

processing as a service from a remote host to common CPU 

enable clients. The framework is also implemented by a 

Java-based CORBA language implementation. CORBA 

supports language independence and mobility (platform 

independence). Common Unified Device Architecture 

(CUDA) based parallel programming API is chosen at hosts 

to support the GPGPU processing. Besides, we choose a 

novel application-adaptive merge sort [5][6] which has not 

yet been implemented in a parallel system. A new parallel 

adaptive merge sort algorithm is designed especially for 

GPU-based systems and the performance improvement is 

tested on the proposed distributed framework.   

The remainder of the work is organized as follows: 

Section II    introduces the background study and state-of-

the-art technologies.  Section III gives tools, application, 

and implementation details. Section IV shows the results 

and performance analysis of GPU-based parallel 

applications. Finally, the concluding remarks are presented 

in the conclusion section.   



www.ierjournal.org            International Engineering Research Journal (IERJ), Volume 3 Issue 4 Page 6484-6492, 2020 ISSN 2395-1621 

 
© 2020, IERJ All Rights Reserved  Page 2 

 

II. BACKGROUND STUDY 

 
A distributed system is implemented with some 

interconnected (communicate and/or coordinate)  

independent computers within a communication network. It 

is organized through the middleware that runs on all 

machines but offers a uniform interface to the system. 

Middleware is a kind of software that serves to connect 

separate and already existing programs or software 

components. Enterprise applications and web services [7] 

are examples of such software components. Different 

middlewares are available for different applications to 

include- Remote Procedure Call (RPC), Remote Method 

Invocation (RMI), Common Object Request Broker 

(CORBA), Distributed Common Object Model (DCOM), 

etc. CORBA is a software standard that is defined and 

maintained by the Object Management Group (OMG). It is 

an architecture and specification that creates, distributes, 

and manages distributed program objects in a network. It 

also allows programs at different locations and developed 

by different vendors can communicate in the network. 

A. CORBA System Architecture 

CORBA (Common Object Request Broker Architecture) 

automates many common network programming tasks 

including object configuration (registration, location, and 

activation), requests and responses handling (request 

demultiplexing, parameter marshaling and unmarshalling, 

stream serializing, operation dispatching), error handling 

(framing and error detecting and recovering), etc. Fig. 1 

presents the CORBA architecture, including client and 

server communication over IIOP protocol. 

In Fig.1, the CORBA architecture includes the Interface 

Description Language (IDL) language and the platform-

independent ORB (Object Request Broker) interface. ORB 

offers a useful approach for deploying open, distributed, 

heterogeneous computing solutions to support transparent 

communication(request-response) between all connected 

objects located locally or remotely. IIOP (Internet Inter-

ORB Protocol) is an ORB transport protocol that enables 

network objects from multiple compatible ORBs to 

communicate transparently over TCP/IP. CORBA can 

establish secure communications channels between clients 

and object services by allowing a high-level security 

framework including the authentication and access control 

of remote users and services, etc.  

 

Fig 1. CORBA Architecture 

B. GPU Based System Architecture 

GPU multiprocessors are worked as co-processors. When 

the CPU invokes a kernel call for GPU that kernel call 

executes in parallel several times in GPUs cores. For an 

instance, the number of tasks a GPU can execute in parallel 

depends on its architecture including the number of SM 

(stream multiprocessors) and cores per SM called stream 

processor (SP), and memory (registers, global, shared). Each 

SM is allotted with an equal number of cores/streaming 

processors (SPs). Upon receiving a kernel call or an 

execution command from the CPU, the GPU SMs are 

awakened and distributed with an equalized workload of 

"responsibilities" which are referred to as "kernel". Each 

kernel is structured with several BLOCKS and several 

THREADS. SPs are only capable to handle threads. GPU 

kernel is distributed into SMs, the SMs would distribute all 

the instructions residing in the kernel to all available SPs.  

Under every multiprocessor, there is a large number of 

32-bit registers. Register memory is the fastest memory 

among all other memories in the GPU system. Each thread 

will be assigned to a set of registers and uses them for 

fetching and storing data/instructions. Shared memory is 

comparatively slower than registers but sharable between 

threads in a block. Because it resides in a chip, it has a 

higher bandwidth than global or local memory. It can be 

compared to an L1 cache in a regular CPU. It shares a 64k 

memory segment per SM. Global memory resides on the 

device but off-chip from the multiprocessors. Because of 

that access to global memory is much costlier than accessing 

shared memory. All threads from any SMs can access global 

memory. Local memory is the private memory for each 

thread execution. Local memory is also off-chip and resides 

on the device. These memories are allocated to the thread 

when kernel execution needs more memory than registers to 

hold the thread's local data. Constant memory is accessed 

like cached. Each multiprocessor cached an amount of 

constant memory (64k), so that repeated reading from 

constant memory will be faster.  

Fig. 2 shows the architecture of NVIDIA GeForce GTX 

650. NVIDIA provides GPU massive parallelism platform 

named CUDA (Compute Unified Device Architecture). 

CUDA supports a heterogeneous programming model- 

where the kernel threads execute at the device and 

implement with CUDA enable APIs and rest of the program 

run at CPU in C language. CUDA programming also 

maintains two separate memory spaces (DRAMs), one is 

CPU memory and the other is device memory. Therefore, a 

CUDA program manages the global, constant, and shared 

memory spaces visible to kernels through built-in API calls 

including device memory allocation and deallocation as well 

as data transfer between CPU and device memory. 

 

 
Fig 2. NVIDIA GeForce GTX 650 Architecture 
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C. Implementation of SMs and SPs using BLOCKS and 

THREADS 

The CUDA programming model maintains two (2) 

separate memory spaces in DRAM including host memory 

(utilized by the CPU) and device memory (utilized by the 

GPU). Host codes execute serially on CPU and the device 

functions that means kernels execute on GPU. Therefore, a 

program manages the global, constant, and texture memory 

spaces (host variables) visible to kernels through calls to the 

CUDA runtime. This includes device memory allocation 

and deallocation as well as data transfer between host and 

device memory. 

 

#define gridsize 5 

#define blocksize 1024 

__global__ void adder(int *d_a,int *d_b,int *d_c) 

{ 

 int a = blockDim.x * blockIdx.x + threadIdx.x; 

 d_c[a] = d_a[a] + d_b[a]; 

} 

int main() 

{ 

         adder << <gridsize, blocksize >> >(d_a, d_b, d_c);  

} 

 

The function(adder) labeled with __global__ type is the 

function that is invoked by the serial code for executing in 

GPU. The instructions written inside the function are 

exactly the instructions executed in each thread. The 

blocksize stands for the number of threads allocated in each 

block, and the grid size stands for the number of blocks are 

allocated during the program execution. Thus, GPU will 

enumerate and create 5 blocks each accommodating 1024 

threads in a logical partition of GPU for the above kernel 

function. Once the enumeration is done blocks would be 

thrown to SMs to execute. Now some restrictions are 

imposed on the device.  Users are bound to declare the size 

of the block equal or lesser than the number of threads a 

single SM is capable to accommodate.  In our GTX 650 

device, the maximum 1024 number of threads an SM can 

manage with its 192 SPs.  

All user-defined numbers of threads are first allocated 

into a block and the blocks are then superimposed on the 

SMs. In the GTX 650 device, there are only two SMs. Each 

SM would first allocate two 1024/512/256/128/64 sized 

blocks in them. The SM would then calculate how many 

threads are available within him to complete 1024 threads. 

Those rest are allocated to another block. Thus, one SM 

would be able to execute 1 (1024/1024), 2(1024/512), 

4(1024/256), 8 (1024/128), and 16 (1024/64) block(s) 

consecutively. Thus, in GTX 650, for 5 grid size and 1024 

blocksize will execute three (3) iterations and consecutively 

execute 2x1024 threads in one iteration. If one iteration 

takes 3.2 microseconds, then the full code execution takes 

9.6 microseconds. 

Each kernel execution takes the same amount of time due 

to thread and block-level parallelism rather depending on 

the number of data to be executed. Let's find out the effect 

of block size and grid size in execution time. The 

experiment in Fig. 3 proofs that a single block takes almost 

the same amount of time regardless of the number of data or 

threads are taken into consideration. The initial downtrend 

of the graph might play a little role of counterproof but on 

average the time taken to execute each of the blocks keeps a 

relatively static flow. 

Fig 3. Time graph for Grid size: 1  & Blocksize: 32 to 

1024 

D. Related Works 

Many real-time distributed systems are designed and 

implemented on the CORBA framework in [8] [9] [10] [11] 

and [12]. Heterogeneous computing systems provide an 

opportunity to dramatically increase the performance of 

parallel and High-Performance Computing (HPC) 

applications on clusters with CPU and GPU architectures. 

GPUs are used to speed up many scientific computations; 

however, to use several networked GPUs concurrently, the 

programmer must explicitly partition work and transmit data 

between devices. Message Passing Interface (MPI) works 

through the message passing paradigm between scalable 

clusters [13]. However, it is unable to transfer data between 

CPU and GPU. OpenMP [14] works on a shared memory 

multiprocessing system but unable to scale beyond 200 

nodes due to threads management overhead and cache 

coherence H/W requirements. OpenCL [15] a standard 

programming model is jointly developed by Apple, Intel, 

AMD, and NVIDIA. It supports parallelism and efficient 

data delivery between parallel processors. However, it uses 

lower-level programming constructs. Common Unified 

Device Architecture (CUDA) [24] supports straightforward 

APIs to manage devices, memory, etc, and higher scalability 

with low-overhead thread management, easy 

communication between CPU and GPU, or vice versa. Thus, 

the CUDA programming API is suitable for hosts to support 

GPGPU processing. 

DistCL[16] framework distributes the execution of 

OpenCL kernels across a GPU cluster. Many GPUs Package 

(MGP) [17] is running OpenMP, C++, and unmodified 

OpenCL applications on clusters with many GPU devices 

and reduce the complexity of programming and running 

parallel applications on the clusters-based system. DistCL 

and MGP work successfully in an integrated, centralized, 

homogeneous cluster computers system only. Recently 

major cloud providers, such as Microsoft Azure, Amazon 

Web Services, and IBM SoftLayer have announced 

partnerships with Nvidia to provide on-demand GPU cloud 

computing [18]. Still, they are in the developing phase. Thus, 

service-oriented and distributed GPGPU processing is in 

demand. Remote Method Invocation (RMI)[19], Common 

Object Request Broker Architecture (CORBA)[20][21], 

Simple Object Access Protocol (SOAP)[22], Remote 

Procedure Call (RPC)[23][24][25] and etc. are the available 

middleware to create distributed frameworks. Besides, 

CORBA supports language independence and mobility 

(platform independence) and its java-based implementation 
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can be a good choice for a distributed framework to provide 

GPGPU processing service.  

Merge sort is one of the most efficient sorting algorithms 

and works on the principle of Divide and Conquer. Adaptive 

Merge sort is a modified merge sort [5] and reduces the 

layer of merging. However, our adaptive merge sort has not 

yet been implemented in parallel. Thus, in this paper the 

application we choose our proposed adaptive merge short 

with a new design of implementation for GPGPU based 

processing. 

 

III. TOOLS AND APPLICATION 
 

The GPU device (used for the experiments) is designed 

by Kepler architecture and uses a GK107 chip. The Device 

has a clock rate of 1124 MHz No. of multiprocessors (SM) 

is 2 with 192 cores in each. The warp size of the device is 

32. The CPU specifications are Intel(R) Core (TM) i5-3470 

CPU, 3.20GHz (4 CPUs), 3.2GHz, 8192 MB RAM, and 

Page File is 6004 MB. 

A. Application 1:  Matrix Multiplication 

To multiply two matrices, the condition that must be 

followed is: 'Number of columns in the 1st matrix must be 

equal with the number of rows in the 2nd matrix'. The 

dimension of the result matrix will be (column of the 1st 

matrix × row of the 2nd matrix). That means if we take two 

matrices A[2][3] & B[3][4] and multiply then the result 

matrix will be C[2][4]. See Fig. 4 for a better 

understanding.

  
Fig 4. Matrix Multiplication 

 

The equation to calculate the value of each position of C 

is: 

C0,0= A0,0 × B0,0 + A0,1 × B1,0 + A0,2 × B2,0         

 or, C1,2= A1,0 × B0,2 + A1,1 × B1,2 + A1,2 × B2,2 

 

Serial implementation 

In serial application the program determines every value 

in result array one at a time. We can describe the code 

snippet as follows:  

for i = 0 to < row of 1st matrix  

 begin 

     for j = 0 to < column of 2nd matrix  

       begin 

          for k = 0 to < row of 2nd matrix  

           begin 

          sum = sum + matrix1[i][k] *matrix2[k][j]; 

           end 

         result¬_matrix[i][j] = sum; 

      sum = 0; 

      end 

     end 

 

This part calculates the value of each position of the 

result matrix.  As we can see to calculate the result matrix it 

needs 24 times to calculate the value of the sum according 

to the example given above. It may seem very little number 

to a beginner level programmer and also took a tiny period 

to execute on the modern processor, but when we multiply 

matrices with hundreds/thousands of rows and columns then 

the time cost will be visible to us. We present some data of 

time to calculate to multiply two matrices in Table 1. To 

avoid complexity, we are using square matrices (matrix with 

the same height and width). We can reduce the computation 

time by implementing it in parallel GPU architecture. 

 

Parallel implementation 

    Before understanding the parallel application let's 

recall the concept of two-dimensional thread and block at 

first. We already know that every thread has a given ID 

known as threadIDx starts from 0 at every new block. To 

know the position of a thread from the beginning of the first 

block we can use the following equation: 

 

Position_of_thread = blockIDx × blockDim + threadIDx 

 

    Here, blockIDx is the block ID that contains several 

active threads, blockDim is the total number of threads in a 

block and threadIDx is ID of the active thread. 

 

Therefore, the idea is, the value of every position of the 

result matrix will be calculated by different threads in 

parallel. That means, the value of C0,0 will be calculated on 

threadIDx(0,0) and C1,2 on thradIDx(1,2), whether they 

belong to the same or different block. Which is completely 

dependent upon the value of blockDim defined by the 

programmer at the beginning of the program. So, the Kernel 

function will be like:  

  

__global__ void MatMulKernel(Matrix A, Matrix B, 

Matrix C)  

{ 

         // Each thread computes one element of C 

        // by accumulating results into Cvalue 

float Cvalue = 0.0; 

int row = blockIdx.y * blockDim.y + threadIdx.y; 

int col = blockIdx.x * blockDim.x + threadIdx.x; 

 

if(row > A.height || col > B.width) return; 

for (int e = 0; e < A.width; ++e) 

Cvalue += A[row][col+e] * B[row+e] [ col]; 

    C.elements[row][col] = Cvalue; 

} 

B. Application 2:  Adaptive Merge Sort 

Adaptive merge sort is an improved version of the 

famous merge sort algorithm based on the "divide and 

conquer" method. Where merge sort has a time complexity 

of O(nlog2(n)) for the best-case scenario, the adaptive 

merge sort has the time complexity of O(n). For the worst-

case scenario, both the merge sort and the adaptive merge 

sort has the time complexity of O(nlog2(m)) where m<=n/2. 

Adaptive merge sort gives the programmers an efficient way 

of sorting. Also, it can perform even better if coupled with 

parallelism.  

Data sets of random numbers have some natural orders or 

sequences. Even in the worst-case situation (the most 

disordered) at least two elements sitting alongside each 

other have an ordered sequence, either increasing or 

decreasing. For performing the adaptive merge sort, at first, 

we find that natural ordered sequence(s) and mark them 

using a flag based on ascending or descending order, which 
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means divide the data into smaller sub-list or node. After 

that, every consecutive pair of one merge and create a new 

node in sorted order. After creating smaller sub-lists or 

nodes, the sorting process can be implemented in serial or in 

parallel. 

 

Serial Implementation 

For every merge operation, two types of nodes are 

needed- high_node and low_node, and it occurs between 

two consecutive pairs of nodes. For example, node 0 with 

node 1 or node 4 with node 5. One-time merge loop 

operation between two consecutive nodes from 0 to N is 

termed as – total merge. The total merge occurs log2N times 

for serial implementation. 

 

Parallel Implementation 

Parallel implementation differs from serial 

implementation in one key aspect, two (2) procedures from 

serial implementation are executed in parallel: 

• Conversion of sublists (descending nodes to ascending): 

For serial implementation, every node needs to be checked 

and converted from descending order to ascending order 

once per iteration. The worst-case complexity for this 

procedure is O(N/2). In parallel implementation, all nodes 

are checked by different threads and executed in parallel. 

The proposed parallel implementation can check 

1024x2x2=4096 nodes in a single time instant. Thus, 

complexity will be reduced to O (1).  

• Merging the converted sublists: This part works in 

parallel thus transform into a kernel function and executes in 

GPU. For parallel execution, a CUDA program was created 

to do the conversion procedure of the sublists. The 

following kernel will execute in GPU and will work with 5 

threads.  

__global__ void merge_myway_ascend(int *d_num, int 

*d_start_ind, int *d_end_ind, int *d_as_ds, int *swapper) 

 

And invoking kernel function in main 

 

merge_myway_ascend <<<1, nonodes >>>(d_num, 

d_start_ind, d_end_ind, d_as_ds, swapper); 

 

An example data set with 17, 51, 64, 94, 17, 17, 18, 0, 1, 

2, 4, 5, 14, 15, 18, 0, 5, 17, 18, 64 has taken to show the 

steps of parallel implementation. Conversion algorithm first 

implements and Fig. 5 presents the sub lists D= (Node 0- 

Node 4)=5. 

 

 
Fig 5. Nodes after conversion 

 

Merging procedure calls the merge kernel, with the 

following parametes-  Height =⌈〖log〗_2 (D)⌉ = 3, Size of 

data (N) = 20 and Aproxnode size = ∑(size[i]*freq[i]) / ∑ 

freq[i]  =  4. After invoking merge kernel following 

operations are carried out in each thread execution. For 

finding new position for any data we follow the equation 

stated below: 

New position = start_ind[low] + (fetched index - 

start_ind[high]) + (index of itself in main dataset - 

start_ind[low]) 

Where,  

start_ind[low] = starting index of the low node. 

fetched index = the index in the high node where the data 

should probably be at. 

start_ind[high] = starting index of the high node. 

index of itself in the main dataset is equal the index of the 

data in consideration in the original dataset. 

 

Below, calculations are shown the merging procedure for 

Node0 and Node1. Thus low=0 and high=1. This is called 

first level merging and presented in Fig. 6(i) to Fig. 6(vii). 

 

Thread 0 is responsible to find the position of Data [0] in 

the result merging array. To do that thread0 reads the 

starting index of Node0 (start_ind[low] is 0, low=0) and the 

starting index of Node1 (start_ind[high] is 4, high=1). 

Node0[data index] = 17 will check in Node1 list from 

starting index (4) to end sequentially to find a bigger 

number than 17, and when finds return the Node1 index 

(fetched index). In our case which is 6. So, New position of 

17 = start_ind[low] + (fetched index - start_ind[high]) + 

(index of itself in main dataset - start_ind[low]) = 0 + (6 - 4) 

+ (0 - 0) = 2. Fig. 6(i) puts 17 into its right position. 

Fig 6(i). New position of 17 from low_node 

 

Simultaneously thread 1 executes and responsible to find 

the position of Data [1] in the result merging array. To do 

that thread1 reads the starting index of Node0 (start_ind[low] 

is 0, low=0) and the starting index of Node1 (start_ind[high] 

is 4, high=1). Node0[data index] = 51 will check in Node1 

list from starting index (4) to end sequentially to find a 

bigger number than 51, and when finds return the Node1 

index (fetched index). In our case which is none. Thus, 

fetched index = end index of Node1+1; So, New position of 

51 = start_ind[low] + (fetched index - start_ind[high]) + 

(index of itself in main dataset - start_ind[low]) = 0 + (7 - 4) 

+ (1 - 0) = 4. Fig. 6(ii) puts 51 into its right 

position.

              Fig 6(ii): New position of 51 from low_node 

 

Simultaneously thread 2 executes similar way and find 

new position for Data[2]. New position of 64 (Data[2]) = 

start_ind[low] + (fetched index - start_ind[high]) + (index of 

itself in main dataset - start_ind[low]) = 0 + (7 - 4) + (2 - 0) 

= 5. Fig. 6(iii) puts 64 into its right 

position.

             Fig 6(iii). New position of 64 from low_node 

 

Simultaneously thread 3 executes similar way and find 

new position for Data[3]. New position of 94 (Data[3]) = 

start_ind[low] + (fetched index - start_ind[high]) + (index of 

itself in main dataset - start_ind[low]) = 0 + (7 - 4) + (3 - 0) 

= 6. Fig. 6(iv) puts 94 into its right 

position.

           Fig 6(iv). New position of 94 from low_node 
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Similarly, threads 4, 5, and 6 execute and find new 

positions for Data[4], Data[5], and Data[6]. However, they 

do not need to compare for finding a bigger value from them. 

Directly their index is used to find their new position.  

 

New position of 17 (Data[4]) = start_ind[low] + (fetched 

index - start_ind[high]) + (index of itself in main dataset - 

start_ind[low]) = 0 + (0 - 4) + (4 - 0) = 0. Fig. 6(v) puts 17 

into its right position. 

 

Fig 6(v). New position of 17 from high_node 

 

New position of 17(Data[5])  = start_ind[low] + (fetched 

index - start_ind[high]) + (index of itself in main dataset - 

start_ind[low]) = 0 + (0 - 4) + (5 - 0) = 1. Fig. 6(vi) puts 17 

into its right position. 

 

Fig 6(vi). New position of another 17 from high_node 

 

New position of 18 (Data[6])   = start_ind[low] + (fetched 

index - start_ind[high]) + (index of itself in main dataset - 

start_ind[low]) = 0 + (1 - 4) + (6 - 0) = 3. Fig. 6(vii) puts 18 

into its right position. 

 

Fig 6(vii). New position of 18 from high_node 

 

Fig. 7 shows the result after completion of the first level 

merging. 

  

 

Fig 7.  Data set with Start and end INDEX of nodes after the 

1
st
 level of merging 

 

And the process described earlier for the first level 

merging will also continue until the final result is achieved. 

Fig. 8 shows the result after second-level merging and Fig. 

10 shows the final sorted list after final merging. The total 

number of the level needed is the Height value, which is = 3 

here. 

Fig 8.  Data set with Start and end INDEX of nodes after the 

2nd level of 

merging

Fig 9. Main data set and Start and end INDEX of the node 

after final level merging 

 

Fig 10. CalcServer is the server code initialized at port 1050. 

 

Fig 11. Client console. 

 

 
Fig 12. Output of a complete CUDA program of adding two 

layers 

IV. EXPERIMENTS AND RESULTS 

A. CORBA Based Client-Server Implementation 

CORBD (Object request broker daemon) is used to 

enable clients to transparently locate and invoke persistent 

objects on servers in the CORBA environment. Our 

CORBA-based server (CalcServer) is implemented in IP 

169.254.88.102 and port 1050, see Fig. 10. 

The client uses port no. and IP address in the command 

line are used to establish a connection with the server. After 

successful connection server asks the client to choose one of 
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the given options as services given in Fig. 11. The client 

chooses the appropriate service as a number. Thereafter, the 

server-side code can perform the specific service including 

ADD, SUB, Run Exe (Adaptive Merge Sort), etc. For 

running Adaptive Merge Sort in CUDA based GPGPU 

processing Run Exe option needs to choose. Fig. 12 shows 

an example running environment of a complete CUDA 

program that adds two(2) arrays of 4096 integers and the 

operation uses GPU cores and takes a screenshot of the 

outputs and saves in on server computer. 

B. Experiment on Application1:  Matrix Multiplication 

At first, we implement the Matrix Multiplication 

application in the server with serial implementation, and the 

CPU execution time (in a sec) is noted in Table I. Later, we 

experiment on the Matrix Multiplication application in 

GPGPU based server. We already mentioned that the kernel 

code is the part of CUDA code that is executed by GPU 

processors. Thus, to visualize the effect of GPU-based 

implementation, we experiment and test the Matrix 

Multiplication application's kernel execution time by 

increasing matrix size and block size (number of threads). 

Results are presented in Fig. 13.  It highlights a noticeable 

decrement of time on the same size matrix calculation 

between parallel implementations with different block sizes. 

A question can arise here, why is there no difference in 

execution time between 32 to 4 block sizes for 200 size 

square matrix multiplications but have a huge difference in 

1000 size square matrix multiplication?  

The answer to the question depends on the GPU 

architecture. As our GPU is limited to use 2SMs and 1024 

threads in each SM. Thus, it restricts us to use the highest 

1024x2 threads and 64k local memory to store block data 

inside an SM. 32,16,8 and 4 block sizes restrict 64,128,256 

and 512 corresponding blocks into 2SMs and 32, 16, 8, and 

4 corresponding threads execution for solving a block of 

operations in parallel. 32, 16, 8, and 4 block sizes allow per-

thread operation same thus should provide the same time to 

complete the execution. However, SM internal memory size 

creates constraints. All block data should be copied into 

internal SM memory at a single time. When block data 

crosses the size of the internal memory then left the exceed 

block to execute in the next phase, which repeats block copy 

and thread execution and increases overall execution time. 

Thus, 200 size square matrix multiplication requires 

200x200=40,000 results. Thus, 40,000 threads can execute 

parallel and solve the problem nearly a similar amount of 

time for the block sizes. However, increasing the data size 

creates a larger data size for a block and demands a larger 

memory size.  Next level copy time adds much more 

execution time and creates larger gaps between different 

block sizes executions. 

TABLE I 

AVERAGE EXECUTION TIME OF MATRIX MULTIPLICATION 

SERIAL IMPLEMENTATION 

Size of the Square Matrices (S) 

 (A[S][S] & B[S][S]) 

Time (sec) 

200 0.037 

400 0.408 

600 1.555 

800 5.469 

1000 13.658 

 

 

Fig 13. Kernel execution time (µs) vs. matrix size based on 

various Block Sizes 

C. Experiment on Application2: Adaptive Merge Sort 

Parallel Adaptive Merge sort requires both CPU and GPU 

hybrid implementation. Serial parts implement in the CPU 

and parallel parts implement in GPU in this experiment. 

Thus, we consider only merging portion to compare the 

performance of Adaptive Merge sort implementation in 

CPU and GPU as merging procedure implements in GPU 

only for parallel version and CPU for the serial version. Fig.  

14 depicts a comparison in execution time of merging 

procedure for various amounts of data using CPU and GPU. 

We can see the difference in performance for completing an 

adaptive merge sort on a large number of data using CPU 

and GPU. Parallel implantation using GPU wins the 

comparison by a large gap with the serial implementation 

using CPU. For 13312 data, our proposed parallel 

implementation works about 6.89% faster than the serial 

implementation when the block size is 1024 and grid size 1. 

Fig. 15 depicts the comparison between the execution time 

of serial implementation by CPU and proposed parallel 

implementation by GPU for an optimum block size of 128. 

We see a significant rise in performance by our proposed 

parallel implementation using the CORBA framework for 

the block size of 128; about 7.65% faster than serial 

implementation using CPU only.  
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0.023636

0.029439

0.038158

0.06062

0.072206

0.072

0.149

0.248

0.327

0.498

5120

7168

9216

11264

13312

CPU vs GPU execution time 
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CPU GPU

 

Fig 14. Comparison between the execution time of serial 

implementation using CPU and proposed parallel 

implementation using GPU (blocksize 1024) 

 

 

Fig 15. Comparison between the execution time of serial 

implementation using CPU and proposed parallel 

implementation using GPU (blocksize 128) 

V. CONCLUSION 

Matrix multiplication is a specific type of application 

where the appeal of CUDA shines. To avoid multifaceted 

iterations that might prove to be a huge deal of time 

consumption, it is a good idea to implement GPU 

parallelism rather than relying upon the CPU's serial 

implementations.  We avoid memory transfer time as it does 

not serve the purpose of our pursuit and leave for future 

work. Similar results are also highlighted in adaptive merge 

sort. Besides, the CORBA framework based parallel 

implementation for adaptive merge sort yielded the best 

result in every possible scenario. With optimum blocksize, 

CORBA framework based parallel implementation is found 

out to be about 7.65% faster than the serial implementation. 

Thus two different applications are implemented on GPGPU 

through the proposed CORBA-based distributed framework. 

Their successful implementation and performance highlight 

the workability of our proposed framework. 
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